Thursday, July 14, 2022
HomeNanotechnologyExtremely-low-energy programmable non-volatile silicon photonics primarily based on phase-change supplies with graphene...

Extremely-low-energy programmable non-volatile silicon photonics primarily based on phase-change supplies with graphene heaters


  • Cheng, Q., Bahadori, M., Glick, M., Rumley, S. & Bergman, Ok. Current advances in optical applied sciences for knowledge facilities: a evaluation. Optica 5, 1354–1370 (2018).

    CAS 

    Google Scholar
     

  • Pérez, D. et al. Multipurpose silicon photonics sign processor core. Nat. Commun. 8, 636 (2017).


    Google Scholar
     

  • Shen, Y. et al. Deep studying with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).

    CAS 

    Google Scholar
     

  • Arrazola, J. M. et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021).

    CAS 

    Google Scholar
     

  • Rogers, C. et al. A common 3D imaging sensor on a silicon photonics platform. Nature 590, 256–261 (2021).

    CAS 

    Google Scholar
     

  • Watts, M. R. et al. Adiabatic thermo-optic Mach–Zehnder swap. Decide. Lett. 38, 733–735 (2013).


    Google Scholar
     

  • Thomson, D. J. et al. 50-Gb/s silicon optical modulator. IEEE Photon. Technol. Lett. 24, 234–236 (2012).

    CAS 

    Google Scholar
     

  • Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).

    CAS 

    Google Scholar
     

  • Han, J.-H. et al. Environment friendly low-loss InGaAsP/Si hybrid MOS optical modulator. Nat. Photon. 11, 486–490 (2017).

    CAS 

    Google Scholar
     

  • He, M. et al. Excessive-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and past. Nat. Photon. 13, 359–364 (2019).

    CAS 

    Google Scholar
     

  • Koeber, S. et al. Femtojoule electro-optic modulation utilizing a silicon–natural hybrid machine. Mild Sci. Appl. 4, e255 (2015).

    CAS 

    Google Scholar
     

  • Rudolph, T. Why I’m optimistic concerning the silicon-photonic path to quantum computing. APL Photon. 2, 030901 (2017).


    Google Scholar
     

  • Fang, Z., Chen, R., Zheng, J. & Majumdar, A. Non-volatile reconfigurable silicon photonics primarily based on phase-change supplies. IEEE J. Sel. High. Quantum Electron. https://doi.org/10.1109/JSTQE.2021.3120713 (2021).

  • Raoux, S., Xiong, F., Wuttig, M. & Pop, E. Section change supplies and part change reminiscence. MRS Bull. 39, 703–710 (2014).


    Google Scholar
     

  • Shportko, Ok. et al. Resonant bonding in crystalline phase-change supplies. Nat. Mater. 7, 653–658 (2008).

    CAS 

    Google Scholar
     

  • Zheng, J. et al. Nonvolatile electrically reconfigurable built-in photonic swap enabled by a silicon PIN diode heater. Adv. Mater. 32, 2001218 (2020).

    CAS 

    Google Scholar
     

  • Zheng, J. et al. GST-on-silicon hybrid nanophotonic built-in circuits: a non-volatile quasi-continuously reprogrammable platform. Decide. Mater. Categorical 8, 1551–1561 (2018).

    CAS 

    Google Scholar
     

  • Ríos, C. et al. Extremely-compact nonvolatile photonics primarily based on electrically reprogrammable clear part change supplies. Preprint at https://arxiv.org/abs/2105.06010 (2021).

  • Xu, P., Zheng, J., Doylend, J. Ok. & Majumdar, A. Low-loss and broadband nonvolatile phase-change directional coupler switches. ACS Photon. 6, 553–557 (2019).

    CAS 

    Google Scholar
     

  • Ríos, C. et al. Built-in all-photonic non-volatile multi-level reminiscence. Nat. Photon. 9, 725–732 (2015).


    Google Scholar
     

  • Feldmann, J. et al. Calculating with mild utilizing a chip-scale all-optical abacus. Nat. Commun. 8, 1256 (2017).

    CAS 

    Google Scholar
     

  • Feldmann, J. et al. Parallel convolutional processing utilizing an built-in photonic tensor core. Nature 589, 52–58 (2021).

    CAS 

    Google Scholar
     

  • Delaney, M. et al. Nonvolatile programmable silicon photonics utilizing an ultralow-loss Sb2Se3 part change materials. Sci. Adv. 7, eabg3500 (2021).

    CAS 

    Google Scholar
     

  • Delaney, M., Zeimpekis, I., Lawson, D., Hewak, D. W. & Muskens, O. L. A brand new household of ultralow loss reversible phase-change supplies for photonic built-in circuits: Sb2S3 and Sb2Se3. Adv. Funct. Mater. 30, 2002447 (2020).

    CAS 

    Google Scholar
     

  • Zheng, J., Zhu, S., Xu, P., Dunham, S. & Majumdar, A. Modeling electrical switching of nonvolatile phase-change built-in nanophotonic constructions with graphene heaters. ACS Appl. Mater. Interfaces 12, 21827–21836 (2020).

    CAS 

    Google Scholar
     

  • Zhang, H. et al. Miniature multilevel optical memristive swap utilizing part change materials. ACS Photon. 6, 2205–2212 (2019).

    CAS 

    Google Scholar
     

  • Kato, Ok., Kuwahara, M., Kawashima, H., Tsuruoka, T. & Tsuda, H. Present-driven phase-change optical gate swap utilizing indium–tin-oxide heater. Appl. Phys. Categorical 10, 072201 (2017).


    Google Scholar
     

  • Taghinejad, H. et al. ITO-based microheaters for reversible multi-stage switching of phase-change supplies: in direction of miniaturized beyond-binary reconfigurable built-in photonics. Decide. Categorical 29, 20449–20462 (2021).

    CAS 

    Google Scholar
     

  • Fang, Z. et al. Non-volatile reconfigurable built-in photonics enabled by broadband low-loss part change materials. Adv. Decide. Mater. 9, 2002049 (2021).

    CAS 

    Google Scholar
     

  • Xiong, F., Liao, A. D., Estrada, D. & Pop, E. Low-power switching of phase-change supplies with carbon nanotube electrodes. Science 332, 568–570 (2011).

    CAS 

    Google Scholar
     

  • Khan, A. I. et al. Ultralow-switching present density multilevel phase-change reminiscence on a versatile substrate. Science 373, 1243–1247 (2021).

    CAS 

    Google Scholar
     

  • Farmakidis, N. et al. Plasmonic nanogap enhanced phase-change gadgets with twin electrical-optical performance. Sci. Adv. 5, eaaw2687 (2019).

    CAS 

    Google Scholar
     

  • Ballan, H. & Declercq, M. Excessive Voltage Gadgets and Circuits in Normal CMOS Applied sciences (Springer, 2013).

  • Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms primarily based on silicon nitride and Hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).

    CAS 

    Google Scholar
     

  • Heimala, P., Katila, P., Aarnio, J. & Heinamaki, A. Thermally tunable built-in optical ring resonator with poly-Si thermistor. J. Lightwave Technol. 14, 2260–2267 (1996).

    CAS 

    Google Scholar
     

  • Fang, Z., Zheng, J., & Majumdar, A. Non-volatile built-in photonics enabled by broadband clear part change materials. In Convention on Lasers and Electro-Optics JTh2B.3 (Optical Society of America, 2020); https://doi.org/10.1364/CLEO_AT.2020.JTh2B.3

  • Ríos, C. et al. Multi-level electro-thermal switching of optical phase-change supplies utilizing graphene. Adv. Photon. Res. 2, 2000034 (2021).


    Google Scholar
     

  • Ríos, C. et al. In-memory computing on a photonic platform. Sci. Adv. 5, eaau5759 (2019).


    Google Scholar
     

  • Loke, D. Ok. et al. Ultrafast nanoscale phase-change reminiscence enabled by single-pulse conditioning. ACS Appl. Mater. Interfaces 10, 41855–41860 (2018).

    CAS 

    Google Scholar
     

  • Xiong, C. et al. Monolithic 56 Gb/s silicon photonic pulse-amplitude modulation transmitter. Optica 3, 1060–1065 (2016).

    CAS 

    Google Scholar
     

  • Schuler, S. et al. Excessive-responsivity graphene photodetectors built-in on silicon microring resonators. Nat. Commun. 12, 3733 (2021).

    CAS 

    Google Scholar
     

  • Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008).

    CAS 

    Google Scholar
     

  • Sorianello, V. et al. Graphene–silicon part modulators with gigahertz bandwidth. Nat. Photon. 12, 40–44 (2018).

    CAS 

    Google Scholar
     

  • Li, X. et al. Quick and dependable storage utilizing a 5 bit, nonvolatile photonic reminiscence cell. Optica 6, 1–6 (2019).


    Google Scholar
     

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional materials. Science 342, 614–617 (2013).

    CAS 

    Google Scholar
     

  • Gao, L. et al. Face-to-face switch of wafer-scale graphene movies. Nature 505, 190–194 (2014).

    CAS 

    Google Scholar
     

  • Lee, Y. et al. Wafer-scale synthesis and switch of graphene movies. Nano Lett. 10, 490–493 (2010).

    CAS 

    Google Scholar
     

  • Romagnoli, M. et al. Graphene-based built-in photonics for next-generation datacom and telecom. Nat. Rev. Mater. 3, 392–414 (2018).

    CAS 

    Google Scholar
     

  • Liang, X. et al. Towards clear and crackless switch of graphene. ACS Nano 5, 9144–9153 (2011).


    Google Scholar
     

  • Atabaki, A. H. et al. Integrating photonics with silicon nanoelectronics for the subsequent technology of techniques on a chip. Nature 556, 349–354 (2018).

    CAS 

    Google Scholar
     

  • Solar, C. et al. Single-chip microprocessor that communicates straight utilizing mild. Nature 528, 534–538 (2015).

    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments