Cheng, Q., Bahadori, M., Glick, M., Rumley, S. & Bergman, Ok. Current advances in optical applied sciences for knowledge facilities: a evaluation. Optica 5, 1354–1370 (2018).
Pérez, D. et al. Multipurpose silicon photonics sign processor core. Nat. Commun. 8, 636 (2017).
Shen, Y. et al. Deep studying with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).
Arrazola, J. M. et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021).
Rogers, C. et al. A common 3D imaging sensor on a silicon photonics platform. Nature 590, 256–261 (2021).
Watts, M. R. et al. Adiabatic thermo-optic Mach–Zehnder swap. Decide. Lett. 38, 733–735 (2013).
Thomson, D. J. et al. 50-Gb/s silicon optical modulator. IEEE Photon. Technol. Lett. 24, 234–236 (2012).
Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).
Han, J.-H. et al. Environment friendly low-loss InGaAsP/Si hybrid MOS optical modulator. Nat. Photon. 11, 486–490 (2017).
He, M. et al. Excessive-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and past. Nat. Photon. 13, 359–364 (2019).
Koeber, S. et al. Femtojoule electro-optic modulation utilizing a silicon–natural hybrid machine. Mild Sci. Appl. 4, e255 (2015).
Rudolph, T. Why I’m optimistic concerning the silicon-photonic path to quantum computing. APL Photon. 2, 030901 (2017).
Fang, Z., Chen, R., Zheng, J. & Majumdar, A. Non-volatile reconfigurable silicon photonics primarily based on phase-change supplies. IEEE J. Sel. High. Quantum Electron. https://doi.org/10.1109/JSTQE.2021.3120713 (2021).
Raoux, S., Xiong, F., Wuttig, M. & Pop, E. Section change supplies and part change reminiscence. MRS Bull. 39, 703–710 (2014).
Shportko, Ok. et al. Resonant bonding in crystalline phase-change supplies. Nat. Mater. 7, 653–658 (2008).
Zheng, J. et al. Nonvolatile electrically reconfigurable built-in photonic swap enabled by a silicon PIN diode heater. Adv. Mater. 32, 2001218 (2020).
Zheng, J. et al. GST-on-silicon hybrid nanophotonic built-in circuits: a non-volatile quasi-continuously reprogrammable platform. Decide. Mater. Categorical 8, 1551–1561 (2018).
Ríos, C. et al. Extremely-compact nonvolatile photonics primarily based on electrically reprogrammable clear part change supplies. Preprint at https://arxiv.org/abs/2105.06010 (2021).
Xu, P., Zheng, J., Doylend, J. Ok. & Majumdar, A. Low-loss and broadband nonvolatile phase-change directional coupler switches. ACS Photon. 6, 553–557 (2019).
Ríos, C. et al. Built-in all-photonic non-volatile multi-level reminiscence. Nat. Photon. 9, 725–732 (2015).
Feldmann, J. et al. Calculating with mild utilizing a chip-scale all-optical abacus. Nat. Commun. 8, 1256 (2017).
Feldmann, J. et al. Parallel convolutional processing utilizing an built-in photonic tensor core. Nature 589, 52–58 (2021).
Delaney, M. et al. Nonvolatile programmable silicon photonics utilizing an ultralow-loss Sb2Se3 part change materials. Sci. Adv. 7, eabg3500 (2021).
Delaney, M., Zeimpekis, I., Lawson, D., Hewak, D. W. & Muskens, O. L. A brand new household of ultralow loss reversible phase-change supplies for photonic built-in circuits: Sb2S3 and Sb2Se3. Adv. Funct. Mater. 30, 2002447 (2020).
Zheng, J., Zhu, S., Xu, P., Dunham, S. & Majumdar, A. Modeling electrical switching of nonvolatile phase-change built-in nanophotonic constructions with graphene heaters. ACS Appl. Mater. Interfaces 12, 21827–21836 (2020).
Zhang, H. et al. Miniature multilevel optical memristive swap utilizing part change materials. ACS Photon. 6, 2205–2212 (2019).
Kato, Ok., Kuwahara, M., Kawashima, H., Tsuruoka, T. & Tsuda, H. Present-driven phase-change optical gate swap utilizing indium–tin-oxide heater. Appl. Phys. Categorical 10, 072201 (2017).
Taghinejad, H. et al. ITO-based microheaters for reversible multi-stage switching of phase-change supplies: in direction of miniaturized beyond-binary reconfigurable built-in photonics. Decide. Categorical 29, 20449–20462 (2021).
Fang, Z. et al. Non-volatile reconfigurable built-in photonics enabled by broadband low-loss part change materials. Adv. Decide. Mater. 9, 2002049 (2021).
Xiong, F., Liao, A. D., Estrada, D. & Pop, E. Low-power switching of phase-change supplies with carbon nanotube electrodes. Science 332, 568–570 (2011).
Khan, A. I. et al. Ultralow-switching present density multilevel phase-change reminiscence on a versatile substrate. Science 373, 1243–1247 (2021).
Farmakidis, N. et al. Plasmonic nanogap enhanced phase-change gadgets with twin electrical-optical performance. Sci. Adv. 5, eaaw2687 (2019).
Ballan, H. & Declercq, M. Excessive Voltage Gadgets and Circuits in Normal CMOS Applied sciences (Springer, 2013).
Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms primarily based on silicon nitride and Hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).
Heimala, P., Katila, P., Aarnio, J. & Heinamaki, A. Thermally tunable built-in optical ring resonator with poly-Si thermistor. J. Lightwave Technol. 14, 2260–2267 (1996).
Fang, Z., Zheng, J., & Majumdar, A. Non-volatile built-in photonics enabled by broadband clear part change materials. In Convention on Lasers and Electro-Optics JTh2B.3 (Optical Society of America, 2020); https://doi.org/10.1364/CLEO_AT.2020.JTh2B.3
Ríos, C. et al. Multi-level electro-thermal switching of optical phase-change supplies utilizing graphene. Adv. Photon. Res. 2, 2000034 (2021).
Ríos, C. et al. In-memory computing on a photonic platform. Sci. Adv. 5, eaau5759 (2019).
Loke, D. Ok. et al. Ultrafast nanoscale phase-change reminiscence enabled by single-pulse conditioning. ACS Appl. Mater. Interfaces 10, 41855–41860 (2018).
Xiong, C. et al. Monolithic 56 Gb/s silicon photonic pulse-amplitude modulation transmitter. Optica 3, 1060–1065 (2016).
Schuler, S. et al. Excessive-responsivity graphene photodetectors built-in on silicon microring resonators. Nat. Commun. 12, 3733 (2021).
Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008).
Sorianello, V. et al. Graphene–silicon part modulators with gigahertz bandwidth. Nat. Photon. 12, 40–44 (2018).
Li, X. et al. Quick and dependable storage utilizing a 5 bit, nonvolatile photonic reminiscence cell. Optica 6, 1–6 (2019).
Wang, L. et al. One-dimensional electrical contact to a two-dimensional materials. Science 342, 614–617 (2013).
Gao, L. et al. Face-to-face switch of wafer-scale graphene movies. Nature 505, 190–194 (2014).
Lee, Y. et al. Wafer-scale synthesis and switch of graphene movies. Nano Lett. 10, 490–493 (2010).
Romagnoli, M. et al. Graphene-based built-in photonics for next-generation datacom and telecom. Nat. Rev. Mater. 3, 392–414 (2018).
Liang, X. et al. Towards clear and crackless switch of graphene. ACS Nano 5, 9144–9153 (2011).
Atabaki, A. H. et al. Integrating photonics with silicon nanoelectronics for the subsequent technology of techniques on a chip. Nature 556, 349–354 (2018).
Solar, C. et al. Single-chip microprocessor that communicates straight utilizing mild. Nature 528, 534–538 (2015).