Li, H. et al. Na+-gated water-conducting nanochannels for reinforcing CO2 conversion to liquid fuels. Science 367, 667–671 (2020).
Morejudo, S. H. et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science 353, 563–566 (2016).
Ren, T., Patel, M. & Rlok, Ok. Olefins from standard and heavy feedstocks: vitality use in steam cracking and various processes. Vitality 31, 425–451 (2006).
Snel, R. Olefins from syngas. Catal. Rev. Sci. Eng. 29, 361–445 (1987).
Dry, M. E. The Fischer–Tropsch course of: 1950–2000. Catal. At the moment 71, 227–241 (2002).
Torres Galvis, H. M. & de Jong, Ok. P. Catalysts for manufacturing of decrease olefins from synthesis fuel: a overview. ACS Catal. 3, 2130–2149 (2013).
Pan, X., Jiao, F., Miao, D. & Bao, X. Oxide–zeolite-based composite catalyst idea that allows syngas chemistry past Fischer–Tropsch synthesis. Chem. Rev. 121, 6588–6609 (2021).
Zhou, W. et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO into hydrocarbon chemical substances and fuels. Chem. Soc. Rev. 48, 3193–3228 (2019).
Galvis, H. M. T. et al. Supported iron nanoparticles as catalysts for sustainable manufacturing of decrease olefins. Science 335, 835–838 (2012).
Zhong, L. et al. Cobalt carbide nanoprisms for direct manufacturing of decrease olefins from syngas. Nature 538, 84–87 (2016).
Jiao, F. et al. Selective conversion of syngas to mild olefins. Science 351, 1065–1068 (2016).
Cheng, Ok. et al. Direct and extremely selective conversion of synthesis fuel into decrease olefins: design of a bifunctional catalyst combining methanol synthesis and carbon–carbon coupling. Angew. Chem. Int. Ed. 55, 4725–4728 (2016).
Wang, P. et al. Synthesis of steady and low-CO2 selective ε-iron carbide Fischer–Tropsch catalysts. Sci. Adv. 4, eaau2947 (2018).
Li, J. et al. Built-in tuneable synthesis of liquid fuels by way of Fischer–Tropsch know-how. Nat. Catal. 1, 787–793 (2018).
Xu, Y. et al. A hydrophobic FeMn@Si catalyst will increase olefins from syngas by suppressing C1 by-products. Science 371, 610–613 (2021).
Soled, S., Iglesia, E. & Fiato, R. A. Exercise and selectivity management in iron catalyzed Fischer–Tropsch synthesis. Catal. Lett. 7, 271–280 (1990).
Shroff, M. D. et al. Activation of precipitated iron Fischer–Tropsch synthesis catalysts. J. Catal. 156, 185–207 (1995).
Zhai, P. et al. Extremely tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst. Angew. Chem. Int. Ed. 55, 9902–9907 (2016).
Koeken, A. C. J., Torres Galvis, H. M., Davidian, T., Ruitenbeek, M. & de Jong, Ok. P. Suppression of carbon deposition within the iron-catalyzed manufacturing of decrease olefins from synthesis fuel. Angew. Chem. Int. Ed. 51, 7190–7193 (2012).
Torres Galvis, H. M. et al. Iron particle dimension results for direct manufacturing of decrease olefins from synthesis fuel. J. Am. Chem. Soc. 134, 16207–16215 (2012).
Liu, Y., Chen, J. F., Bao, J. & Zhang, Y. Manganese-modified Fe3O4 microsphere catalyst with efficient energetic part of forming mild olefins from syngas. ACS Catal. 5, 3905–3909 (2015).
Lohitharn, N., Goodwin, J. G. Jr. & Lotero, E. Fe-based Fischer–Tropsch synthesis catalysts containing carbide-forming transition metallic promoters. J. Catal. 255, 104–113 (2008).
de Smit, E. & Weckhuysen, B. M. The renaissance of iron-based Fischer–Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. Chem. Soc. Rev. 37, 2758–2781 (2008).
Jiao, F. et al. Form-selective zeolites promote ethylene formation from syngas by way of a ketene intermediate. Angew. Chem. Int. Ed. 57, 4692–4696 (2018).
Zhu, Y. et al. Position of manganese oxide in syngas conversion to mild olefins. ACS Catal. 7, 2800–2804 (2017).
Liu, X. et al. Tandem catalysis for hydrogenation of CO and CO2 to decrease olefins with bifunctional catalysts composed of spinel oxide and SAPO-34. ACS Catal. 10, 8303–8314 (2020).
Zhu, X. et al. Trimodal porous hierarchical SSZ-13 zeolite with improved catalytic efficiency within the methanol-to-olefins response. ACS Catal. 6, 2163–2177 (2016).
Zhao, B. et al. Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5 tandem catalysts. Chem 3, 323–333 (2017).
Cheng, Ok. et al. Bifunctional catalysts for one-step conversion of syngas into aromatics with glorious selectivity and stability. Chem 3, 334–347 (2017).
Yang, J., Pan, X., Jiao, F., Li, J. & Bao, X. Direct conversion of syngas to aromatics. Chem. Commun. 53, 11146–11149 (2017).
Botes, F. G. & Böhringer The addition of HZSM-5 to the Fischer–Tropsch course of for improved gasoline manufacturing. Appl. Catal. A Gen. 267, 217–225 (2004).
Gwagwa, X. Y. & van Steen, E. Migration of potassium in an Fe2O3/H-ZSM-5 composite catalyst. Chem. Eng. Technol. 32, 826–829 (2009).
Karre, A. V., Kababji, A., Kugler, E. L. & Dadyburjor, D. B. Impact of addition of zeolite to iron-based activated-carbon-supported catalyst for Fischer–Tropsch synthesis in separate beds and blended beds. Catal. At the moment 198, 280–288 (2012).
Karre, A. V., Kababji, A., Kugler, E. L. & Dadyburjor, D. B. Impact of time on stream and temperature on upgraded merchandise from Fischer–Tropsch synthesis when zeolite is added to iron-based activated-carbon-supported catalyst. Catal. At the moment 214, 82–89 (2013).
Li, B. et al. In-situ crystallization path to nanorod-aggregated purposeful ZSM-5 microspheres. J. Am. Chem. Soc. 135, 1181–1184 (2013).
Weber, J. L. et al. Impact of proximity and help materials on deactivation of bifunctional catalysts for the conversion of synthesis fuel to olefins and aromatics. Catal. At the moment 342, 161–166 (2020).
Weber, J. L. et al. Conversion of synthesis fuel to aromatics at medium temperature with a Fischer Tropsch and ZSM-5 twin catalyst mattress. Catal. At the moment 369, 175–183 (2021).
Wang, C. et al. Significance of zeolite wettability for selective hydrogenation of furfural over Pd@Zeolite catalysts. ACS Catal. 8, 474–481 (2018).
Wang, C. et al. Product selectivity managed by nanoporous environments in zeolite crystals enveloping rhodium nanoparticle catalysts for CO2 hydrogenation. J. Am. Chem. Soc. 141, 8482–8488 (2019).
Im, J., Shin, H., Jang, H., Kim, H. & Choi, M. Maximizing the catalytic operate of hydrogen spillover in platinum-encapsulated aluminosilicates with managed nanostructures. Nat. Commun. 5, 3370 (2014).
Wang, S. et al. Activationand spillover of hydrogen on sub-1 nm palladium nanoclusters confined inside sodalite zeolite for the semi-hydrogenation of alkynes. Angew. Chem. Int. Ed. 58, 7668–7672 (2019).
Niemantsverdriet, J. W., der Kraan, A. M. V., Dijk, W. L. W. & der Baan, H. S. V. Conduct of metallic iron catalysts throughout Fischer–Tropsch synthesis studied with Mössbauer spectroscopy, X-ray diffraction, carbon content material dedication, and response kinetic measurements. J. Phys. Chem. 84, 3363–3370 (1980).
Li, S., Li, A., Krishnamoorthy, S. & Iglesia, E. Results of Zn, Cu, and Ok promoters on the construction and on the discount, carburization, and catalytic habits of iron based mostly Fischer–Tropsch synthesis catalysts. Catal. Lett. 77, 197–205 (2001).
Efremov, A. A. & Davydov, A. A. Infrared spectra of π-complexes of propylene and ethylene on TiO2. React. Kinet. Catal. Lett. 15, 327–331 (1980).
Ji, W., Chen, Y., Shen, S., Li, S. & Wang, H. FTIR research of adsorption of CO, NO and C2H4 and response of CO + H2 on the well-dispersed FeOxγ-Al2O3 and FeOx/TiO2(a) catalysts. Appl. Surf. Sci. 99, 151–160 (1996).
Leclerc, H. et al. Infrared research of the affect of reducible iron(III) metallic websites on the adsorption of CO, CO2, propane, propene and propyne within the mesoporous metallic–natural framework MIL-100. Phys. Chem. Chem. Phys. 13, 11748–11756 (2011).
Li, M., Nawaz, M. A., Track, G., Zaman, W. Q. & Liu, D. Influential function of elemental migration in a composite iron–zeolite catalyst for the synthesis of aromatics from syngas. Ind. Eng. Chem. Res. 59, 9043–9054 (2020).
Wang, T. et al. Sodium-mediated bimetallic Fe–Ni catalyst boosts steady and selective manufacturing of sunshine aromatics over HZSM-5 zeolite. ACS Catal. 11, 3553–3574 (2021).
Cnudde, P. et al. Experimental and theoretical proof for the promotional impact of acid websites on the diffusion of alkenes by way of small-pore zeolites. Angew. Chem. Int. Ed. 60, 10016–10022 (2021).
Smit, B. & Maesen, T. L. M. Molecular simulations of zeolites: adsorption, diffusion, and form selectivity. Chem. Rev. 108, 4125–4184 (2008).