Thursday, July 14, 2022
HomeNanotechnologyFischer–Tropsch synthesis to olefins boosted by MFI zeolite nanosheets

Fischer–Tropsch synthesis to olefins boosted by MFI zeolite nanosheets


  • Li, H. et al. Na+-gated water-conducting nanochannels for reinforcing CO2 conversion to liquid fuels. Science 367, 667–671 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Morejudo, S. H. et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science 353, 563–566 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Ren, T., Patel, M. & Rlok, Ok. Olefins from standard and heavy feedstocks: vitality use in steam cracking and various processes. Vitality 31, 425–451 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Snel, R. Olefins from syngas. Catal. Rev. Sci. Eng. 29, 361–445 (1987).

    CAS 
    Article 

    Google Scholar
     

  • Dry, M. E. The Fischer–Tropsch course of: 1950–2000. Catal. At the moment 71, 227–241 (2002).

    CAS 
    Article 

    Google Scholar
     

  • Torres Galvis, H. M. & de Jong, Ok. P. Catalysts for manufacturing of decrease olefins from synthesis fuel: a overview. ACS Catal. 3, 2130–2149 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Pan, X., Jiao, F., Miao, D. & Bao, X. Oxide–zeolite-based composite catalyst idea that allows syngas chemistry past Fischer–Tropsch synthesis. Chem. Rev. 121, 6588–6609 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zhou, W. et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO into hydrocarbon chemical substances and fuels. Chem. Soc. Rev. 48, 3193–3228 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Galvis, H. M. T. et al. Supported iron nanoparticles as catalysts for sustainable manufacturing of decrease olefins. Science 335, 835–838 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, L. et al. Cobalt carbide nanoprisms for direct manufacturing of decrease olefins from syngas. Nature 538, 84–87 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Jiao, F. et al. Selective conversion of syngas to mild olefins. Science 351, 1065–1068 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Cheng, Ok. et al. Direct and extremely selective conversion of synthesis fuel into decrease olefins: design of a bifunctional catalyst combining methanol synthesis and carbon–carbon coupling. Angew. Chem. Int. Ed. 55, 4725–4728 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Wang, P. et al. Synthesis of steady and low-CO2 selective ε-iron carbide Fischer–Tropsch catalysts. Sci. Adv. 4, eaau2947 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Li, J. et al. Built-in tuneable synthesis of liquid fuels by way of Fischer–Tropsch know-how. Nat. Catal. 1, 787–793 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Xu, Y. et al. A hydrophobic FeMn@Si catalyst will increase olefins from syngas by suppressing C1 by-products. Science 371, 610–613 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Soled, S., Iglesia, E. & Fiato, R. A. Exercise and selectivity management in iron catalyzed Fischer–Tropsch synthesis. Catal. Lett. 7, 271–280 (1990).

    CAS 
    Article 

    Google Scholar
     

  • Shroff, M. D. et al. Activation of precipitated iron Fischer–Tropsch synthesis catalysts. J. Catal. 156, 185–207 (1995).

    CAS 
    Article 

    Google Scholar
     

  • Zhai, P. et al. Extremely tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst. Angew. Chem. Int. Ed. 55, 9902–9907 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Koeken, A. C. J., Torres Galvis, H. M., Davidian, T., Ruitenbeek, M. & de Jong, Ok. P. Suppression of carbon deposition within the iron-catalyzed manufacturing of decrease olefins from synthesis fuel. Angew. Chem. Int. Ed. 51, 7190–7193 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Torres Galvis, H. M. et al. Iron particle dimension results for direct manufacturing of decrease olefins from synthesis fuel. J. Am. Chem. Soc. 134, 16207–16215 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Liu, Y., Chen, J. F., Bao, J. & Zhang, Y. Manganese-modified Fe3O4 microsphere catalyst with efficient energetic part of forming mild olefins from syngas. ACS Catal. 5, 3905–3909 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Lohitharn, N., Goodwin, J. G. Jr. & Lotero, E. Fe-based Fischer–Tropsch synthesis catalysts containing carbide-forming transition metallic promoters. J. Catal. 255, 104–113 (2008).

    CAS 
    Article 

    Google Scholar
     

  • de Smit, E. & Weckhuysen, B. M. The renaissance of iron-based Fischer–Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. Chem. Soc. Rev. 37, 2758–2781 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Jiao, F. et al. Form-selective zeolites promote ethylene formation from syngas by way of a ketene intermediate. Angew. Chem. Int. Ed. 57, 4692–4696 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Zhu, Y. et al. Position of manganese oxide in syngas conversion to mild olefins. ACS Catal. 7, 2800–2804 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Liu, X. et al. Tandem catalysis for hydrogenation of CO and CO2 to decrease olefins with bifunctional catalysts composed of spinel oxide and SAPO-34. ACS Catal. 10, 8303–8314 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Zhu, X. et al. Trimodal porous hierarchical SSZ-13 zeolite with improved catalytic efficiency within the methanol-to-olefins response. ACS Catal. 6, 2163–2177 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Zhao, B. et al. Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5 tandem catalysts. Chem 3, 323–333 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Cheng, Ok. et al. Bifunctional catalysts for one-step conversion of syngas into aromatics with glorious selectivity and stability. Chem 3, 334–347 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Yang, J., Pan, X., Jiao, F., Li, J. & Bao, X. Direct conversion of syngas to aromatics. Chem. Commun. 53, 11146–11149 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Botes, F. G. & Böhringer The addition of HZSM-5 to the Fischer–Tropsch course of for improved gasoline manufacturing. Appl. Catal. A Gen. 267, 217–225 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Gwagwa, X. Y. & van Steen, E. Migration of potassium in an Fe2O3/H-ZSM-5 composite catalyst. Chem. Eng. Technol. 32, 826–829 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Karre, A. V., Kababji, A., Kugler, E. L. & Dadyburjor, D. B. Impact of addition of zeolite to iron-based activated-carbon-supported catalyst for Fischer–Tropsch synthesis in separate beds and blended beds. Catal. At the moment 198, 280–288 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Karre, A. V., Kababji, A., Kugler, E. L. & Dadyburjor, D. B. Impact of time on stream and temperature on upgraded merchandise from Fischer–Tropsch synthesis when zeolite is added to iron-based activated-carbon-supported catalyst. Catal. At the moment 214, 82–89 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Li, B. et al. In-situ crystallization path to nanorod-aggregated purposeful ZSM-5 microspheres. J. Am. Chem. Soc. 135, 1181–1184 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Weber, J. L. et al. Impact of proximity and help materials on deactivation of bifunctional catalysts for the conversion of synthesis fuel to olefins and aromatics. Catal. At the moment 342, 161–166 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Weber, J. L. et al. Conversion of synthesis fuel to aromatics at medium temperature with a Fischer Tropsch and ZSM-5 twin catalyst mattress. Catal. At the moment 369, 175–183 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wang, C. et al. Significance of zeolite wettability for selective hydrogenation of furfural over Pd@Zeolite catalysts. ACS Catal. 8, 474–481 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Wang, C. et al. Product selectivity managed by nanoporous environments in zeolite crystals enveloping rhodium nanoparticle catalysts for CO2 hydrogenation. J. Am. Chem. Soc. 141, 8482–8488 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Im, J., Shin, H., Jang, H., Kim, H. & Choi, M. Maximizing the catalytic operate of hydrogen spillover in platinum-encapsulated aluminosilicates with managed nanostructures. Nat. Commun. 5, 3370 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Wang, S. et al. Activationand spillover of hydrogen on sub-1 nm palladium nanoclusters confined inside sodalite zeolite for the semi-hydrogenation of alkynes. Angew. Chem. Int. Ed. 58, 7668–7672 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Niemantsverdriet, J. W., der Kraan, A. M. V., Dijk, W. L. W. & der Baan, H. S. V. Conduct of metallic iron catalysts throughout Fischer–Tropsch synthesis studied with Mössbauer spectroscopy, X-ray diffraction, carbon content material dedication, and response kinetic measurements. J. Phys. Chem. 84, 3363–3370 (1980).

    CAS 
    Article 

    Google Scholar
     

  • Li, S., Li, A., Krishnamoorthy, S. & Iglesia, E. Results of Zn, Cu, and Ok promoters on the construction and on the discount, carburization, and catalytic habits of iron based mostly Fischer–Tropsch synthesis catalysts. Catal. Lett. 77, 197–205 (2001).

    CAS 
    Article 

    Google Scholar
     

  • Efremov, A. A. & Davydov, A. A. Infrared spectra of π-complexes of propylene and ethylene on TiO2. React. Kinet. Catal. Lett. 15, 327–331 (1980).

    CAS 
    Article 

    Google Scholar
     

  • Ji, W., Chen, Y., Shen, S., Li, S. & Wang, H. FTIR research of adsorption of CO, NO and C2H4 and response of CO + H2 on the well-dispersed FeOxγ-Al2O3 and FeOx/TiO2(a) catalysts. Appl. Surf. Sci. 99, 151–160 (1996).

    CAS 
    Article 

    Google Scholar
     

  • Leclerc, H. et al. Infrared research of the affect of reducible iron(III) metallic websites on the adsorption of CO, CO2, propane, propene and propyne within the mesoporous metallic–natural framework MIL-100. Phys. Chem. Chem. Phys. 13, 11748–11756 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Li, M., Nawaz, M. A., Track, G., Zaman, W. Q. & Liu, D. Influential function of elemental migration in a composite iron–zeolite catalyst for the synthesis of aromatics from syngas. Ind. Eng. Chem. Res. 59, 9043–9054 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wang, T. et al. Sodium-mediated bimetallic Fe–Ni catalyst boosts steady and selective manufacturing of sunshine aromatics over HZSM-5 zeolite. ACS Catal. 11, 3553–3574 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Cnudde, P. et al. Experimental and theoretical proof for the promotional impact of acid websites on the diffusion of alkenes by way of small-pore zeolites. Angew. Chem. Int. Ed. 60, 10016–10022 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Smit, B. & Maesen, T. L. M. Molecular simulations of zeolites: adsorption, diffusion, and form selectivity. Chem. Rev. 108, 4125–4184 (2008).

    CAS 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments