Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).
Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).
Tokura, Y. & Kanazawa, N. Magnetic skyrmion supplies. Chem. Rev. 121, 2857–2897 (2021).
Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential purposes. Nat. Rev. Mater. 2, 17031 (2017).
Again, C. et al. The 2020 skyrmionics roadmap. J. Phys. D 53, 363001 (2020).
Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).
Woo, S. et al. Statement of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).
Fert, A., Cros, V. & Sampaio, J. Skyrmions on the monitor. Nat. Nanotechnol. 8, 152–156 (2013).
Zázvorka, J. et al. Thermal skyrmion diffusion utilized in a reshuffler system. Nat. Nanotechnol. 14, 658–661 (2019).
Tune, Okay. M. et al. Skyrmion-based synthetic synapses for neuromorphic computing. Nat. Electron. 3, 148–155 (2020).
Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).
Kajiwara, Y. et al. Transmission {of electrical} indicators by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).
Lebrun, R. et al. Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide. Nature 561, 222–225 (2018).
Cornelissen, L. J. et al. Lengthy-distance transport of magnon spin data in a magnetic insulator at room temperature. Nat. Phys. 11, 1022–1026 (2015).
Wimmer, T. et al. Spin transport in a magnetic insulator with zero efficient damping. Phys. Rev. Lett. 123, 257201 (2019).
Avci, C. O. et al. Interface-driven chiral magnetism and current-driven area partitions in insulating magnetic garnets. Nat. Nanotechnol. 14, 561–566 (2019).
Vélez, S. et al. Excessive-speed area wall racetracks in a magnetic insulator. Nat. Commun. 10, 4750 (2019).
Ding, S. et al. Interfacial Dzyaloshinskii–Moriya interplay and chiral magnetic textures in a ferrimagnetic insulator. Phys. Rev. B 100, 100406 (2019).
Caretta, L. et al. Interfacial Dzyaloshinskii–Moriya interplay arising from rare-earth orbital magnetism in insulating magnetic oxides. Nat. Commun. 11, 1090 (2020).
Lee, A. J. et al. Probing the supply of the interfacial Dzyaloshinskii–Moriya interplay chargeable for the topological Corridor impact in steel/Tm3Fe5O12 methods. Phys. Rev. Lett. 124, 107201 (2020).
Thiaville, A., Rohart, S., Jué, É., Cros, V. & Fert, A. Dynamics of Dzyaloshinskii area partitions in ultrathin magnetic movies. Europhys. Lett. 100, 57002 (2012).
Emori, S., Bauer, U., Ahn, S.-M. M., Martinez, E. & Seaside, G. S. D. D. Present-driven dynamics of chiral ferromagnetic area partitions. Nat. Mater. 12, 611–616 (2013).
Ryu, Okay. S., Thomas, L., Yang, S. H. & Parkin, S. Chiral spin torque at magnetic area partitions. Nat. Nanotechnol. 8, 527–533 (2013).
Manchon, A. et al. Present-induced spin-orbit torques in ferromagnetic and antiferromagnetic methods. Rev. Mod. Phys. 91, 035004 (2019).
Lee, A. J. et al. Investigation of the position of rare-earth parts in spin-Corridor topological Corridor impact in Pt/ferrimagnetic-garnet bilayers. Nano Lett. 20, 4667–4672 (2020).
Shao, Q. et al. Topological Corridor impact at above room temperature in heterostructures composed of a magnetic insulator and a heavy steel. Nat. Electron. 2, 182–186 (2019).
Ahmed, A. S. S. et al. Spin-Corridor topological Corridor impact in extremely tunable Pt/ferrimagnetic-insulator bilayers. Nano Lett. 19, 5683–5688 (2019).
Hubert, A. & Schäfer, R. Magnetic Domains: The Evaluation of Magnetic Microstructures (Springer, 1998).
Soumyanarayanan, A. et al. Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. Nat. Mater. 16, 898–904 (2017).
Büttner, F., Lemesh, I. & Seaside, G. S. D. Idea of remoted magnetic skyrmions: from fundamentals to room temperature purposes. Sci. Rep. 8, 4464 (2018).
Avci, C. O. et al. Present-induced switching in a magnetic insulator. Nat. Mater. 16, 309–314 (2017).
Li, H., Akosa, C. A., Yan, P., Wang, Y. & Cheng, Z. Stabilization of skyrmions in a nanodisk with out an exterior magnetic discipline. Phys. Rev. Appl. 13, 034046 (2020).
Jiang, W. et al. Direct commentary of the skyrmion Corridor impact. Nat. Phys. 13, 162–169 (2017).
Litzius, Okay. et al. Skyrmion Corridor impact revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).
Hirata, Y. et al. Vanishing skyrmion Corridor impact on the angular momentum compensation temperature of a ferrimagnet. Nat. Nanotechnol. 14, 232–236 (2019).
Woo, S. et al. Present-driven dynamics and inhibition of the skyrmion Corridor impact of ferrimagnetic skyrmions in GdFeCo movies. Nat. Commun. 9, 959 (2018).
Crossley, S. et al. Ferromagnetic resonance of perpendicularly magnetized Tm3Fe5O12/Pt heterostructures. Appl. Phys. Lett. 115, 172402 (2019).
Juge, R. et al. Present-driven skyrmion dynamics and drive-dependent skyrmion Corridor impact in an ultrathin movie. Phys. Rev. Appl. 12, 044007 (2019).
Reichhardt, C., Ray, D. & Reichhardt, C. J. O. Collective transport properties of pushed skyrmions with random dysfunction. Phys. Rev. Lett. 114, 217202 (2015).
Zeissler, Okay. et al. Diameter-independent skyrmion Corridor angle noticed in chiral magnetic multilayers. Nat. Commun. 11, 428 (2020).
Litzius, Okay. et al. The position of temperature and drive present in skyrmion dynamics. Nat. Electron. 3, 30–36 (2020).
Kim, J.-V. & Yoo, M.-W. Present-driven skyrmion dynamics in disordered movies. Appl. Phys. Lett. 110, 132404 (2017).
Legrand, W. et al. Room-temperature current-induced era and movement of sub-100 nm skyrmions. Nano Lett. 17, 2703–2712 (2017).
Woo, S. et al. Deterministic creation and deletion of a single magnetic skyrmion noticed by direct time-resolved X-ray microscopy. Nat. Electron. 1, 288–296 (2018).
Hrabec, A. et al. Present-induced skyrmion era and dynamics in symmetric bilayers. Nat. Commun. 8, 15765 (2017).
Torrejon, J., Martinez, E. & Hayashi, M. Tunable inertia of chiral magnetic area partitions. Nat. Commun. 7, 13533 (2016).
Zang, J., Cros, V. & Hoffmann, A. in Topology in Magnetism Ch. 2 (Springer, 2019).
Baumgartner, M. & Gambardella, P. Uneven velocity and tilt angle of area partitions induced by spin-orbit torques. Appl. Phys. Lett. 113, 242402 (2018).
Caretta, L. et al. Quick current-driven area partitions and small skyrmions in a compensated ferrimagnet. Nat. Nanotechnol. 13, 1154–1160 (2018).
Kubota, M. et al. Systematic management of stress-induced anisotropy in pseudomorphic iron garnet skinny movies. J. Magn. Magn. Mater. 339, 63–70 (2013).
Schindelin, J. et al. Fiji: an open-source platform for biological-image evaluation. Nat. Strategies 9, 676–682 (2012).
Tetienne, J. P.-P. et al. The character of area partitions in ultrathin ferromagnets revealed by scanning nanomagnetometry. Nat. Commun. 6, 6733 (2015).
Dovzhenko, Y. et al. Magnetostatic twists in room-temperature skyrmions explored by nitrogen-vacancy middle spin texture reconstruction. Nat. Commun. 9, 2712 (2018).
Gross, I. et al. Skyrmion morphology in ultrathin magnetic movies. Phys. Rev. Mater. 2, 024406 (2018).
Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect facilities. Science 276, 2012–2014 (1997).
Wangsness, R. Okay. Sublattice results in magnetic resonance. Phys. Rev. 91, 1085–1091 (1953).
Collet, M. et al. Technology of coherent spin-wave modes in yttrium iron garnet microdiscs by spin–orbit torque. Nat. Commun. 7, 10377 (2016).
Paulevé, J. Ferromagnetic resonance of gadolinium garnet at 9300 МC/S. C. R. Acad. Sci. 244, 1908–1910 (1957).
Ding, S. et al. Figuring out the origin of the nonmonotonic thickness dependence of spin-orbit torque and interfacial Dzyaloshinskii–Moriya interplay in a ferrimagnetic insulator heterostructure. Phys. Rev. B 102, 054425 (2020).